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LElTER TO THE EDITOR 

Integrable model of interacting XY chains* 

R 2 Bariev 
Kazan Physico-T'echnical Institute, AcademyolSciencer ofthe USSR, Karan 420029, USSR 

Received 30 May 1991 

Abstract. An exact diagonalization o f  the Hamiltonian for the one-dimensional quantum 
model consisting o f  an arbitrary number a l  isotropic X Y  chains connected by many-spin 
interactions is carried out with the help of the generalized nested Bethe ansatr. An exact 
solution for the ground-state energy of the considered model is obtained. 

Considerable progress in the construction and investigation of new integrable models 
in statistical mechanics has been achieved in the last two decades [l-31. First of all it 
is connected with the understanding of the key role of the Yang-Baxter, or star-triangle 
equations [ l-3,4] in the study of integrable statistical systems. Any solution of these 
equations provides us with an integrable spin model both in classical and quantum 
statistical mechanics. Most of the new integrable models have been constructed in this 
way. These models present the generalization of the classical integrable systems con- 
sidered by Bethe, Yang and Baxter for the case of an arbitrary spin S > f ;  see e.g. [SI 
and references therein. It should be noted that the continuous integrable models in 
quantum field theory are solved by the further development of Bethe's ideas in the 
papers of Yang [4] and Sutherland [ 6 ]  which can be considered as complicated systems 
with four-fermion interactions between subsystems [7-91. In the lattice case there is 
only one example of such type-the one-dimensional Hubbard model [IO], which can 
be presented as two isotropic XY chains connected by ZZ interactions. Up to now 
integrable generalizations of this model for the case of an arbitrary number ofsublattices 
have not been constructed. Thus the consideration of other multisublattice systems for 
construction of new integrable lattice models is of interest. 

In a previous paper [ 1 I ]  we considered an integrable system which can be presented 
as two isotropic XY chains connected by three-spin interactions. In the present letter 
we consider a generalization of this model for the case of an arbitrary number of chains. 

The Hamiltonian of the considered model has the following form: 

O ' # O  

where 
a>a' 

B(a - 0 ' )  = 

u ; ~ ,  = $&, * i& ,I 
* Dedicated to Professor M E Fisher on the occasion of his 60th birthday 
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are Pauli spin matrices of the j t h  lattice site on the sublattice a (a = 1,2, .  . . , N). We 
use the usual periodical boundary conditions ( U L + ~ ~ ~ ,  = u ; ~ ~ , ) ,  where L is the number 
of sites on each of N sublattices. The value q determines the interaction between the 
chains. Because of various symmetries of the Hamiltonian (1) it is sufficient to consider 
the model for q > 0. 

By using the Jordan-Wigner transformation [I21 the Hamiltonian (1) can be 
presented in terms of the creation and annihilation operators. Up to the boundary 
conditions such a Hamiltonian is obtained from (1) by the formal substitution of a;e,  
and a;,,, for U,;", and uAml, respectively. In this case we have the model of a conductor 
describing the hopping of electrons on the one-dimensional chains. The probability 
of an electron jump in any direction is determined by the occupation of neighbouring 
sites on the other chains. This situation is analogous to that realized in quasi-one- 
dimensional conductors [ 131. Thus one may hope that the considered model will be 
useful in the study of such systems. In the present letter, however, we consider only 
the mathematical problem of the diagonalization of the Hamiltonian (1). 

To calculate the eigenfunctions of the Hamiltonian (1) 

V = Z f ( x , , a , ;  . . . ,  X" , a " ) u ~ , ( a , ) . . . u ~ , , ( a " ) I o )  (2) 

we use the generalized nested Bethe ansatz [4,6]. Let us consider that in the expression 
(2) there are m, spins directed t on the first chain, m2 spins T on the second chain 
and so on. Let us divide the coordinate space into a number of regions characterized 
by the fixed sequence of the particle coordinates 1 s XQ, s .. . s XQ,! s L where Q is a 
permutation [Q, ,  . . . , Q.] of the numbers 1 ,2 , .  . . , n. Let us seek the amplitudef in 
each of these regions in the form of a superposition of plane waves with n 'wavenumbers' 
k; 

f ( X , ,  a , ; .  . .; X , ,  n.)=x(-l)'(-l)'AYp::::~~~ fi exp(ik,,X,,). (3 )  
P ; = I  

The sum is over all permutations P = [ P,  , . . . , Pn]  of the numbers 1,2,. . . , n. If no 
two particle coordinates are equal the ansatz (3) satisfies H I T ) =  EIV) with energy 
and momentum 

E = -2 x cos k, P =  2 k,. (4) 
j - l  , = I  

The requirement that HI") = EIV) is also satisfied on the boundaries of each region 
provided the coefficients A"p0 satisfy the following equations: 

01 ,... 0 -  ( I . . . L . O I  A,, ... K - Api2...dp: exp(ikp, L) 

where the non-vanishing elements of the S-matrix are 

S,,(k) = 1 S$k) =sin k/sin(k+iq) 
(6) 

Sppl(k)=i sinh 7 exp[isgn(P-a)k]/sin(k+iq) a#P. 

A necessary and sufficient condition for the compatibility of equations ( 5 )  is the 
fulfilment of the Yang-Baxter equations [4,6]. In our case the S-matrix has a well 
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known form [14-171 and satisfies these equations, and we may use the quantum method 
of inverse problems [18, 191 to solve ( 5 ) .  The problem reduces to the diagonalization 
of the transfer matrix of the non-uniform model of the non-intersecting strings [ 2 0 ] .  
As a result, we obtain the system of transcendental equations for finding the kj and 
additional unknown quantities A y '  

kjL+ 1 @(kj-A:'; q ' ) = 2 7 r I j  ( j = 1 , 2 , .  . . , n) 
U N - ,  

o = ,  

(7) 
Y ( y = 1 , 2 ? . . . , M N - k )  

- 2 7 r ~ l N - k l  - 

k =  1 ,2 , .  , . , N - l  

@(k; 7) = 2 tan-'(cot '7 tan t k )  

( A y =  k,) ?' = f7  

where 

- ?r S @( k, 7) < ?i 

and I, and J y '  are integer (half-integer) numbers for odd (even) MN- ,+ l  and 
Mk-, + mX+,  , respectively, and 

Mk- 1 m, ( MN = n;  MO = 0) 
j = ,  

is the summary number of spins t on the first, second,. . . and kth sublattices; XhM, 
is equal to zero if M = 0. 

Let us consider the limit L + a  for fixed ratios n j L  and m , j L .  In this limit the kj 
fill the interval (-Q, Q )  uniformly with density p ( k )  and we have 

Q 
p(  k)  d k = n/ L. (8) I_, 

ILL 
In the same way we introduce the distribution functions u;(A) for the numbers 
Alk) ( p = 1 , 2  ,..., M j . - X , k = l , 2  ,..., N-1) 

4 
u k ( A )  dA = MN-k/  L. (9) 

The ground state corresponds to the following values of 1, and J:':  

I .  , + I  - 1. I = 1 J , + ,  l N - k J - j l N - k l =  P 1 .  

As a result instead of (7) we obtain the system of integral equations 

27rp(k)- I @ ' ( k  - A ;  7')a"'(A) d A =  1 

si 

", 

-6 ,  

2 ?rr( "( A)  + tl* @'(A - A'; 2 7 ')U' ' '(A') d A' 

@'(A-A'; 7')u''"'(A') dA' 
- U * * ,  

(10) 

Y+' = j =i-8 @'(A-A'; 7')dk"'(A') dA'+ 
-8i-t 

( k =  1 , 2 , .  . . , N - 1,) [ B o =  Q, B ,  = 0 ,  u'"l(A) = p ( A ) ] .  

The expression for the energy (4) has the following form: 
r o  

(11) 
I - E  = -2  cos kp(k) dk .  
L JL 
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In the continuum limit when the lattice constant tends to zero the Bethe ansatz 
equations will have the same form as those of the one-dimensional electron gas [4,6]. 
In this sense the model under consideration is the discrete version of this famous 
integrable system. Certainly the lattice model has a symmetry other than its continuous 
analogue, and it is manifested in its physical properties. In particular the lattice model, 
as will be shown later, has non-zero magnetization. 

If the limits of integration in (10) on some variable are (-n, n), then after integration 
of the corresponding equation we have m , = m , + , .  In the most interesting- 
symmetrical-case we have the same number of spins ? on each chain all Bk = n. In  
this case using the Fourier transformation the system of equations (10) is reduced to 
one integral equation for the unknown function p(k) 

Q 

-0 
2 n p ( k ) - j  q ( k -  k')p(k') dk  = 1 (12) 

where 

~~ 

q ( k ) =  1GL+2 exp(-nq)sinh[n?7(N-l)] cos(nk)/sinh(nt)N). 
N n = i  

The equations (11) and (12) determine the ground-state energy as a function of the 
magnetization 

The solution of the equation (12) can be obtained with the help of numerical integration 
or using perturbation theory. In particular at large q we have 

1 1 - E = - 2 -  
L n-Qt 

where f = ( N  - 1)/ N. It is clear from these expressions that the considered model has 
finite magnetization in the zero external field. 

In conclusion we shall identify a number of problems arising in connection with 
the solution of the considered model: the construction of the two-dimensional lattice 
model of the classical statistical mechanics transfer matrix which will be the generating 
function of the motion integrals of the Hamiltonian (1); the consideration of the 
generalizations of the considered model for the case of anisotropic XY chains and, 
finally, the construction of the integrable model S-matrix which would generalize (6) 
in the sense of Belavin [17]. The author hopes to consider these problems in further 
work. 

The author thanks A A Belavin and V L Pokrovski for useful discussions. He is grateful 
to the Scientific Council on High Temperature Superconductivity (USSR) for financial 
support under grant No 344. 
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